電子プローブマイクロアナライザー(EPMA) JEOL JXA-8800 操作マニュアル

2012年10月24日作成 大平俊明

2017年11月6日加筆·修正 菅原 透

目 次

1.	開始操作&測定試料の導入 1-1. 観察・測定前の準備
2.	基本操作
3.	プローブ(電子線)調整
4.	組織観察と画像の取り込み 3-1. 一般的な観察方法
5.	定性分析の方法
6.	定量分析の方法 5-1.標準試料測定(その1):標準試料の新規登録
6.	フィラメントの交換方法
7.	観察・測定の終了方法 7 – 1.EPMA 装置からの試料ホルダーの取り出し方法
8.	トラブルシューティング 8 1 OM ディスプレイ SEI 像 COMP 像が映らたいとき

1. 開始操作&測定試料の導入

1-1. 試料ホルダーへの標準試料,測定試料の設

1. 白色手袋を着用し、マイナスドライバーを使用して、サンプルホルダーに試料をセットする. 薄片は OMTHL, 樹脂埋め込み試料は LH9 のホルダーを使用する.

<ポイント>

薄片の場合:下記の写真のようにカーボンテープで薄片を固定する. 樹脂埋め込み試料:バネで試料が飛ばないようにマイナスドライバーでしっかりと固定する. (注意)LH9 は固定が緩いとバネの力で試料が飛び出す可能性があるので,しっかりと固定すること.

2. 試料ホルダ上のゴミをエアスプレーで吹き払う.

1-2. 試料ホルダーの EPMA 装置への導入方法

1. コンピュータの「Stage Monitor」で試料ホルダーが「Sample Change」の位置にあることを確認. (□ が下記の位置にあること)

2. 試料ホルダーを試料交換室にセットする.

3. 緑色ランプの点灯(試料交換室が大気圧状態)を確認し、緑色点灯ボタンを押す(真空引き開始).

4. 緑色ランプの消灯後, 1分30秒待機. その後シャッターを開く.

5. のぞき窓からホルダーが移動する様子を確認しながら,サンプルホルダーをゆっくり挿入する. 最後まで押し込んだら,反時計回りに回す.

6. サンプル挿入棒をゆっくりと最後まで引っ張る.このとき,のぞき窓からのぞきながら, 試料ホルダーが装置内に設置されていることを確認する.

7.シャッターをゆっくりと閉める.

8. 消灯している緑色ボタンを押し、緑色ランプの点灯(大気圧にリーク)を確認する.

9. 操作パネルの OMTV を ON (→緑に点灯), ブラウン管モニタの電源スイッチを ON にする.

2. 基本操作

ここでは画像取り込み,定性分析,定量分析,面分析,線分析,すべてに共通する操作パネルに関する基本 操作を説明する. EPMA 装置は,まずはじめに下記の基本事項を理解してから操作すること.

(1) ディスプレイには通常は「EOS Monitor」と「Stage Monitor」を表示させる.

「EOS Monitor」には電子線の状態が表示される. 下記によく使う部分を説明する.

フィラメント調節や交換時に調整する部分(通常はさわらない)

「Stage Monitor」にはステージの位置が表示される.

(2)操作パネル

	PCD	PRB SCAN
ステージを移動するとき	どちらでもよい	どちらでもよい
観察や分析点の入力をするとき	OUT (消灯)	ON (緑点灯)
電流値を2.00E-8 (A) に調節するとき	IN(緑点灯)	OFF (消灯)
分析開始前(One-by-Oneやプリセット測定前)	IN(緑点灯)	OFF (消灯)
分析中(定量,定性,面分析)	OUT (消灯)	OFF (消灯)
フィラメント調整するとき	OUT (消灯)	OFF (消灯)
使用しないとき	IN(緑点灯)	OFF (消灯)

(3) ジョイスティックコントローラー

ギヤが噛んでステージが 移動しなくなったときに押す.

3. プローブ(電子線)調整

EPMA を使用するときは、プローブ調整は基本的に毎回行うこと.特に、フィラメントの交換後の 2-3 日の間は電子線が安定しないので、プローブ調整を6時間程度毎くらいに行った方がよい.

- 1. まずはじめにフィラメント飽和点の調整を行う.「EOS Monitor」ウインドウの加速電圧(Acc. V)が 15V,操作盤上の「ACCEL VOLTAGE」がオレンジ色に点灯していることを確認する.
- 2. 操作盤で「PCD」は IN(緑点灯)にしたのち, 照射電流を 2.00E-8A に調節する(「EOS Monitor」→ 「CL (Current)」).

3. 「EOS Monitor」→「Filament」を 90 程度にする.

- 4. フィラメント値を少しずつ増加させながら(「**Filament**」ウインドウで▶をクリック),照射電流の飽和 値を探す.
- (注意)フィラメントの飽和値は、フィラメントの交換直後は140-150程度であるが、使用ど続けていると 飽和値が次第に低下する.こまめに調整をすることで、フィラメントを長持ちさせることができる.

- 5. 操作盤上で「**PCD**」は OUT (消灯), 「**PRB SCAN**」は ON (緑点灯) にする. 「**EOS Monitor**」→「**P.Dia**」 上でビーム径が 0µm になっていることを確認する.
- SEI 像を見ながら試料台の平らな部分のキズやゴミが中心にくるようにステージを移動し、OMTV を見な がら Z 軸を合わせる. このとき、SEI 像には十字線を表示させる(「EOS Monitor」→「Signal」→Scan mode で「B_UP」を選択).
- 7. 照射電流を 10⁻⁹A 程度に調節する(「EOS Monitor」→「CL (Current)」).
- 8. まずはじめに傾斜調整を行う.「EOS Monitor」の「G. Tilt」をクリックしてウインドウを開き,「EMP」 をクリックする.

9. SEI のディスプレイ上にエミッションパターンが表示されるので,「G. Tilt」ウインドウの▶をクリック して楕円形が十字の真下に来るように調整する.

10.「G. Tilt」ウインドウの「EMP」を OFF にして,エミッションパターンを解除する.

- 11.操作盤上で「PCD」を IN(緑点灯)にする.
- 1 2. 「**G. Tilt**」ウインドウの矢印をクリックし,照射電流が最大になる位置を探す. → ウインドウを Close する.
- 13. 次にシフトの調整を行う. 「EOS Monitor」の「G. Shift」をクリックしてウインドウを開く.

14. 「PCD」を IN(緑点灯)のまま,操作盤上の「PROBE CURRENT」を COASE(消灯)の状態でつま みを左いっぱい(照射電流が大きくなる方向)に回す. → 照射電流が $10^{-6} \sim 10^{-7}$ A 程度となる.

1 5. 「G. Shift」ウインドウの▶クリックし,照射電流が最大になる位置を探す.
 → ウインドウを Close する.

- 16. 上記の2~4を繰り返し、もういちどフィラメントの飽和点を探し、照射電流を 2.00E-8A に調節する (「EOS Monitor」→「CL (Current)」).
- 17. 操作盤上で「**PCD**」はOUT(消灯),「**PRB SCAN**」はON(緑点灯)とし, SEI 像を見ながら試料台の上のキズやゴミなどを探し, Z 軸を調整したのち 1000 倍程度で表示させる.
- 18. 操作盤上の「**FOCUS**」を回しながら、キズやゴミがピンボケせずにクリアに見える位置を探す. COASE の状態の方が探しやすい. FINE では変化がわかりにくい.

以上で電子線の調整は終了である.

3. 組織観察と画像の取り込み

組織観察には二次電子像 (SEI 像, Secondary Electron Image) と反射電子像 (COMP 像又は BEI 像, Back Scattered Image) がある. 100µm 以上のサイズの組織を観察するのであれば下記「**3-1.一般的な観察方法**」で十分である. 1µm サイズ微細な組織をクリアに観察する場合には「**3-2.高倍率での観察方法**」を行う.

3-1. 一般的な観察方法

1. 「EOS Monitor」の「Signal」をクリックし,「Scan Control」ウインドウを表示させる.

Electron Optical S Help EOS Menu Filament 119 Hv ON Acc.V 15.0 CL (Current) Signal SEI Mode B_UP Speed SR SEI 86 229 PCD IN Scan OFF Mag 370 P.Dia 0 CL (Focus) C C 185 F 450	ystem r Utility Exit High Volt. Ready Filament W Gun Bias 4 Collector 0 G.Tilt -14 39 G.Shift 12 -6 OHTV ON Optim Apt. 1 Stigma -195-228 Auto Stigma Auto Focus Inst.Picture 2.00E-08 (A)	Reset Scan Image sin Scan Scan Scan PIC Reduce FULL Scan Scan Scan Scan Scan Scan Scan Scan	Scan Cont Scan Cont ON Detec gnal Im COMP TT XR2 XR2 KR2 XR2 Mode SP COMP TT SR SP COMP TT SP SR P2 COMP	trol ctor ON age shift OPO \diamond AUX R3 \diamond XR4 ot posit CLSP \diamond S ANY \diamond D S1 \diamond S2 P3 \diamond P4	11 -11
		NOR		ECP 🔷 EMP	1

2. 「Scan Control」での通常の選択部分は3カ所

 Image signal : 二次電子像は「SEI」,反射電子像は「COMP」を選択.

 Scan mode : 通常の観察(十字線を表示させる)は「B_Up」,画像の取り込みは「PIC」

 Scan speed : SEI 像で観察をするときは「SR」, COMP 像で観察をするときは「S1」

 SEI 像および COMP 像で画像の取り込みをするときは「S3」

- 3. 左側にある DELL の PC で「X_ScanImagePlus」を立ち上げ, 「▶ Start」をクリックする.
- 4. 観察をしたい部分にステージを移動し, OMTV モニターを見ながら Z 軸を調整.

5. Contrast と Brightness を調節する.

SEI 像の場合は操作パネル右端のダイヤル, COMP 像の場合はブラウン管モニタ下のダイヤルを回す.

→ もしもこの段階で画像が見えないときは、「8-1. OM ディスプレイ, SEI 像, COMP 像が映らないとき」をチェックする.

6. 操作パネルの Magnification で観察倍率を調節する.

3-2. 高倍率での観察方法

3-3. 画像の取り込み方法

- 1. 操作盤上で「PCD」はOUT(消灯),「PRB SCAN」はON(緑点灯)にする.
- 2. SEI 像, COMP 像を撮影したい部分にステージを移動し, Z 軸と倍率を調整する.
- 3. 「**EOS Monitor**」の「**Scan Control**」をクリックし, SEI または COMP にチェックを入れる. Scan mode は「**PIC**」, Scan speed は「**S3**」にチェックを入れる.

4. 左側にある DELL の PC で「X_ScanImagePlus」を立ち上げ、 「▶ Start」をクリックする.

5. 画像の取り込みが終わると、下記のウインドウが表示されるので、Sample Name を入力し、 OK をクリックする.

mage Para	meter	
	Auto	
Mag Mag		
₩D		
🔽 Film Numbe	47 PI0	
🔽 Mode	(SLOW 3)	
🔽 Comment		

6. SAVE すると、左列に取り込んだ画像が縮小表示される.取り込んだ時刻の部分をクリックすると、下記 右側のウインドウが表示されるので、File name を入力して OK(Save)をクリックする.

🜃 X_ScanImagePlus [S	SEM 6400] (OnLine Prev	
🕨 Start 🛛 🖬 Stop 🛛 🏠 MF	F DMAG	
ON Line >> Preview (C2> 00:27:11 00:27:11 00:30:17	Full Record Snap	Select Image (Change Parameter) Parameter Title Name D0:27:11 File Name D17408-1 Date&Time 2017/11/07 00:27:11 Size 1280 x 920 ACC Mag WD Film Number 47.PP9 Mode (SLOW 3) Comment Sample Name 071408-1 Ctock Save) Cancel
00:30:17		Cancel

6. ファイルダイアログが現れるので,指定の場所に画像を保存する.

4. 定性分析の方法

1.加速電圧(15kV),印加電流(2.00E-8A)を確認する.

2. Qualitative Analysis→Sample→Group→CGES→New で M4、M5 などと名付ける。

3. Probe Dia.=0 とし、PCD IN 解除、Probe Scan(PRBSCAN) 解除する。(この時、Scan speed は SR で あることを確認。ただし、通常は SR となっている。)

4. Measurement →Stage condition で測定したい位置に移動させ、Read&Apply する。

5. Measurement →Condition Load→S-standard などの測定条件を選択する。

6. Probe Dia.=0or30or50 などを選択する。PCD In、PRBSCAN ON とし、Probe Current を 2.00E-08(A) に設定する。

7.EOS condition→Read→Condition Store する。

8.Stage condition→one-by-one→Acquire で定性分析開始。(測定点を多数セットする場合は、4の操作を 繰り返し、その後 9 へ。)

9. Stage condition を Close し、Measurement →Preset measurement で定性分析開始

10. 測定結果で A-Rank, B-Rank と評価された元素をメモ・考慮し、定量分析及び定量分析用 Standard 測 定を行うべき測定元素を決定する。

定性分析測定結果を受けて定量測定を行う場合は,マニュアル・【3】試料観察&定量分析編へ

5. 定量分析の方法

5-1.標準試料測定(その1):標準試料の新規登録

- 加速電圧(通常 15kV)を確認し、Analysis→Standard Analysis→ Group→CGES を選択し、Sample → A1,A2のように名付ける。
- 2. Measurement →Standard Type で◇Metal か◆Oxide かを選択する。
- 3. Measurement→Element Condition→Standard composition で Standard 試料の全組成を入力する。(この時価数に注意する。FeOorFe₂O₃, Ce₂O₃orCeO₂など)
- Measurement→Element Condition→Element で Na,Al,Si・・・のように、standard として使用する 元素を選択する。(選択した入力順が測定順になるので、揮発性の高い Na は必ず最初になるように入力す る。)
- Measurement→Element Condition→Meas. Order で自動的に設定されているものについて確認し、どのチャンネル(CH-1or2or3)でどの分光結晶(TAP or PETJ or LIF)を使用して standard 測定を行うか決定する。
- 6. Measurement→Element Condition→condition で測定に使用するチャンネル、分光結晶、検出する電子線(Ka、Laなど)を設定し、Back(+)、Back(-)を設定する。(検出する電子線の種類やBack(+)、Back(-)の値設定は、定性分析結果における波長ピークを見て決定しなければいけない。)その後、Meas. Time、Bac. Time を設定する(Meas. Time-Bac. Time は、通常 20sec-10sec で B の場合は 120sec-20sec)(注意事項)3~9%の含有量サンプルを Standard として用いる時は、カウント数を稼ぐために、Measurement time を長め(20sec)にする。(B の場合は、カウントが元々小さいため、120sec,20secとしている。)数 10%の含有量をもつサンプルを Standard として用いる時は、10sec-10sec で良い。1%以下の含有量のサンプルは Standard として用いない!また、Measurement→Element Condition→condition で測定対象元素について、Na ならば Na-CGES、Al ならば Al-CGES、Si ならば Si-CGES のように、基本的には XX-CGES と名付け、2 つのチャンネルに測定可能な分光結晶が付いてる場合には、2 つのチャンネルで standard 測定を行い、2 つの分光結晶で測定可能な場合には 2 つの分光結晶の選択に幅ができるため。)
- Probe Dia.=0or30or50 などを選択し(定性分析結果を受けて定量分析する時は通常定性分析を行った時 に使用した Probe Dia.の値と等しくする)、Probe Current=2.00E-008を設定し、EOS conditionでRead さらに、Condition store→New→A2-50umのように名付ける。

- 8. Stage condition→Pos. Input→Accumulation=5 とし、Probe Dia.=0 とし、PCD IN 解除、PRBSCAN OFF とする。
- 9. 1 点目の測定点位置に移動させ、z 軸のピント合わせ(ブラウン管テレビを見ながらのピント合わせ)を行い、Confirm(パソコン画面上)→Store(ジョイスティック操作盤上)する。

10.2 点目の測定点位置に移動させ、8 の操作と同様に z 軸のピント合わせを行い、Store する。

11.10の操作を5点目の設定が完了するまで繰り返し、PCD IN、PRBSCAN ON し、Probe Current=2.00E-08 を確認する。

12.Close→Condition store→one-by-one→Acquire で Standard 測定開始。

13.上記 1~12の操作を定量分析したい元素種全てについて行う。

(すでに作成済みの standard 測定ファイルを用いて standard 測定、未知試料測定を行う場合は、Analysis →Standard Analysis→ Group→CGES を選択、及び Sample →A1 などを選択し、Condition Load で使用 したい条件を選択し Load で読み込み、Probe Current=2.00E-08 を設定した後、測定点(5 点)を測定痕跡が ない部分を選んだ上で上記 8~11 の操作を行って、上記 12 の操作を行う。)

5-2. 標準試料測定(その2): 登録済み標準試料の測定

1. 加速電圧が 15kV であることを確認する.標準試料の SEI 像を観察しながら分析位置を指定するので, 「EOS Monitor」で「Signal」は SEI,「P.Dia」は 0 とする.

- 2. EPMA Main Menuの「**Analysis**」から「**Standard Analysis**」→「**Sample**」→「**Group**」→「**ES**」 を選択し、目的の標準試料(A1-A0,B1-B10, C1-C10, D1-D10, F1-F12, G1-G3)を選択する.
 - → 下記のウインドウが開く

	Standard	l Analysis		•	
Sample	F5	Measurement	Exit		

3. 「Measurement」→「Stage」を選択し,「Pos. Input」をクリックする.

Table C	onversi	on			Stage		
Sample	F5						
Preset	No.	Comment	S/B	Acm.	Sta	ige (X,Y,Z)
	1		S	5	82.3361,	42.4250,	10.8120
P	os.Input	: On	e-by-0	Ine	Clear	Clo	se

4. 下記のウインドウが開く. 「Accumulation」は5とする.

試料ホルダーが OMTHL: 「**Move**」を1回クリックし,標準試料のある場所までステージを移動させる 試料ホルダーが LH9: SEI 像を見ながらジョイスティックで標準試料のある場所までステージを移動させる

-			St	andard Analysis		
			Stage	Condition Inp No. 1	ut	
Comme	ent					
Scan	Туре	e 🔷 Sta	ge 🔷 Beam			
Magn	ifica	ation		Accumulation	5	
Stage	e Pos	sition	82.3361	,42.4250,10.8	120	mm 🔺
Beam	Posi	ition [_	
	App	oly	Confirm	Read & A	pply	Close
	100		Working Are	ea Stage	_	
^	100	*	90		50	X 82.3361 Y 42.4250 Z 10.8120 Store Read Hove Range:0.0005
					100 Y	(mm)

- 5.操作盤上で「PCD」はOUT(消灯),「PRB SCAN」はON(緑点灯)にする.
- ジョイスティックで標準試料上の動かしながら、ゴミのない場所をしたのち、OMTV モニターを見なが ら Z 軸調節する. このとき、画面に十字が表示されるようにする(「EOS Monitor」→「Scan Control」 →「Scan Mode」で「B_Up」を選択).
- 7. 「Standard Analysis」ウインドウの「Read & Apply」をクリック
 - → 下記の Error 表示が出るので「OK」をクリックする(この操作は必ず必要).

8. 次に「Standard Analysis」ウインドウの「Confirm」をクリックしたのち、ジョイスティックのあ る操作盤の「STOR」を1回押す → 「ピッ!」と音が鳴って下記のように分析点が登録される.

- 9. ステージを少しずつ動かしながら,分析位置を決めて「STOR」を押す操作をあと4回繰り返す. → 5 点分の位置が登録されると,上の「Standard Analysis」ウインドウは自動的に閉じる.
- 10. 鉱物試料の場合にはそのまま次に進んで良い.

ガラス試料の場合は 50-200μm ビームでの分析が必要であるので,「EOS Monitor」の「P. Dia」を クリックし,使用するビーム径に設定する. 11.「Stage」ウインドウに戻り、「One-by-One」をクリックすると標準試料の分析を開始する.

Table (Conversi	on			Stage		
Sample	F!	5					
Preset	No.	Comment	S/B	Acm.	Sta	ige (X,Y,Z	.)
	1		S	5	82.3361,	42.4250,	10.8120
P	os.Inpu	t On	e-by-O	Ine	Clear	Clo	ose

5-3. Condition ファイルの新規作成

定量測定においては,事前に測定元素の組み合わせや分析時間を指定する Condition file を作成しておく必要がある.

- 1. 「Quantitative analysis」 ウインドウ→「Measurement」 メニュー→「Condition Store」 を選択.
- **New**」で新規作成する. ここで Name は ES-xxx の
 連続番号とし, Comment 欄には分析元素を入れる.

-			
	Conditi	on File Store	
Select Nam	e	Sor	t Order Name ♦ Date
No.	Name	Date	Comment
1	ES-035	Nov- 6-2017	SiTiAlCrFeMnMgC
2	ES-037	Nov- 6-2017	SiFeMnMgNiCoCa
3	ES-036	Nov- 5-2017	SiAlFeMgCaNaK
4	ES-034	Oct-30-2017	SIBALCAZNNAMO
5	sph-PCM	0ct-13-2017	
6	Ag_Hara	Oct-10-2017	
7	Electrum-Sofia	Sep-28-2017	
8	Sph-Sofia	Sep-21-2017	
9	Po-Py-Pn-Amo2	Sep-13-2017	
10	po-amo	Sep-13-2017	
, Total 96	files	5530216 Kbyte 37168752 Kbyte	used. free.
Total 96	files	5530216 Kbyte 37168752 Kbyte F	used. free. rint Rename Delet
Total 96	files	5530216 Kbyte 37168752 Kbyte F	used. free. Print Rename Dele

Correction Method

 \diamond Calibration Curve

Cancel

ZAF

0K

- 3. Quantitative analysis ウインドウ \rightarrow 「Measurement」メニュー \rightarrow 「Corr. Method」を選択し, Oxide と ZAF にチェックを入れる.
- 4. 「Measurement」メニューから「Element condition」を選択
 - → 右のウインドウが開く

_		Qu El	anti emer	tativ I <mark>t Co</mark>	e An ndit	alysi ion	S			
WDS	Elements Meas. order Condition	Mg	к	Ca	Na	Si	Fe	Al		
CAL	Elements Condition	0								
								Total	8	Elements
	Close	1					٧	alence	1	

5. WDSの「Elements」をクリックし,周期表から分析元素を選択する.

6. 「Meas. order」をクリックし, CH-1 から CH-4 までの各チャンネルで分析する元素を指定する. Measurement order ウインドウで元素名をマウスでドラッグして移動させる.

<各チャンネルでの元素指定のルール>

- ・ B₂O₃を測定するときは CH-1 にする. この時 CH-1 は B₂O₃専用にする.
- ・ Na₂O と K₂O は最初に測定するように指定する(測定中に揮発損失しやすいため).

7. 各元素の分析時間を考慮して,時間が最短になるような組み合わせにする. 「Condition」をクリックし, 分析条件(Channel, Crystal, Peek seek, Meas. Time, Bac. Time)を確認し, 「OK」をクリックする.

分析条件を変更したい場合は次のようにする: 「Elem-x」をクリック → WDS Element Data Table が 表示される → 元素ファイル(番号)を選択 → 「OK」をクリック. ※ <u>元素ファイルを選択するときには、Si[x]-ES(x はチャンネル)を選択する</u>.

「元素[x]-ES」のファイルは理工学研究センター専用の元素ファイルである.

		ntitative	Analysis					-	Oua	ntitative	Analysis		Ċ
	WDS E	lement C	ondition						WDS E	lement Da	ta Table		ĺ
						-		Element Si					
o.of Elements	7 🛛	Pos. (m	n) 🤝 Wave	. (A) 🔷 V	lave.(nm)		N	Salaat No.	9	10	11	12	
		1	(/		-		Select NO.		10	11	12	
	Elem- 3	Elem- 4	Elem- 5	Elem-6	Elem-7			Name	Si3-ES	Si-silic	Si-TQkb	Si1-ES	
Elements	Ca	Na	Si	Fe	A1			X-ray Name	Ka	Ka	Kb	Ka	l
Name	Ca3-ES	Na4-ES	Si1-ES	Fe2-ES	A14-ES	11		Order	1	1	1	1	l
X-ray Name	Ka	Ka	Ka	Ka	Ka			Channe 1	3	4	4	1	
Order	1	1	1	1	1			Crystal	PETJ	TAP	TAP	TAP	l
Channel	3	4	1	2	4			Spect.Pos.(mm)	228.420	77.473	73.371	77.364	Í
urystai	107 C00	120 552	77 264	124 740	1AP			Back(+)(mm)	5.000	5.000	9.000	5.000	
pect. Pos.(mm)	5 000	9 000	5 000	5 000	5 000			Back(-)(mm)	5.000	5,000	5.000	5,000	
ack (+) (mm)	5 000	5 000	5 000	5 000	5 999			Lime/Count /Ares	Т	Т	Т	Т	
Time/Count	Time	Time	Time	Time	Time			Pork pook H	1	R	9	1-1-	
Pork Sock II	1	0	1	0	1			Hear Time(mar)	10.0	20.0	190.0	20.0	
s Time (sec)	20.0	10.0	20.0	80.0	20.0			nes.time(sec)	10.0	10.0	00.0	E 0.0	
ac. Time (sec)	5.0	5.0	5.0	20.0	5.0			Bac.lime(sec)	10.0	10.0	10000	5.0	
Mes. Count	10000	10000	10000	10000	10000			Mes.Count	10000	10000	10000	10000	
Bac. Count	500	500	500	500	500			Bac.Count	500	500	500	500	l
PHA gain	64	32	32	32	32			PHAgain	64	32	32	32	ļ
High V.(V)	1694	1/04	1/30	1/02	1704			High V.(V)	1694	1604	1704	1730	
Base L.(V)	9.70	9.70	9.70	5 45	9 30			Base L.(V)	0.70	1.85	3.00	0.70	1
Window (V)	Diff	Diff	Diff	Diff	Diff			Window(V)	9.30	4.65	6.35	9.30	l
Diff/Int	1	1	2	2	2			Diff/Int	Diff	Diff	Diff	Diff	
Sequence	-	-		-		-			4				i
Peak overlan	14		Excha	ange				Ne	w Co	py Exc	hange De	elete U	j
- can over rup			Exerie					1	Set		Rea	ad	
	OK		Car	ncel		-			OK		Cont		

Condition file の例

例1:岩石・鉱物の測定, Plagioclase (Condition file: **ES-036**, 分析時間: 200sec) ※斜長石に微量に含まれる Fe, Mg の精度を高めるために,測定時間を長くしている.

No.of Elements	7	Pos. (mn	n) 🔷 Wave	. (A) 💠 🖡	lave.(nm)	. (A) 💠 🖡	lave.(nm)
	Elem- 1	Elem- 2	Elem- 3	Elem- 4	Elem- 5	Elem- 6	Elem-7
Elements	Mq	к	Ca	Na	Si	Fe	A1
Name	Mq1-ES	K2-ES	Ca3-ES	Na4-ES	Si1-ES	Fe2-ES	A14-ES
X-ray Name	Ka	Ka	Ka	Ka	Ka	Ka	Ka
Order	1	1	1	1	1	1	1
Channe 1	1	2	3	4	1	2	4
Crystal	TAP	PETJ	PETJ	TAP	TAP	LIF	TAP
Spect. Pos.(mm)	107.521	120.203	107.699	129.562	77.364	134.749	90.720
Back (+) (mm)	5.000	5.000	5.000	8.000	5.000	5.000	5.000
Back (-) (mm)	5.000	5.000	5.000	5.000	5.000	5.000	6.000
Time/Count	Time	Time	Time	Time	Time	Time	Time
Peak Seek W.	0	0	1	0	1	0	1
Mes. Time (sec)	80.0	10.0	20.0	10.0	20.0	80.0	20.0
Bac. Time (sec)	20.0	5.0	5.0	5.0	5.0	20.0	5.0
Mes. Count	10000	10000	10000	10000	10000	10000	10000
Bac. Count	500	500	500	500	500	500	500
PHA gain	32	64	64	32	32	32	32
High V (V)	1730	1698	1694	1704	1730	1702	1704
Base L.(V)	0.70	0.70	0.70	0.70	0.70	2.00	0.70
Window (V)	9.30	-	9.30	9.30	9.30	5.45	9.30
Diff/Int	Diff	Int	Diff	Diff	Diff	Diff	Diff
Sequence	1	1	1	1	2	2	2
ocqueriee				ſ	Þ	í	1>
Peak overlap			Excha	ange		nge	
	OK		Car	ncel		cel	

		Qu	antitative Analy:	sis	
	CH-1	CH-2	CH-3	CH-4	
1 2	Mg(TAP) Si(TAP)	K (PETJ) Fe(LIF)	<u>Ca(</u> PETJ)	<u>Na(TAP)</u> <u>A1(TAP)</u>	
ОК	Cancel		Pr	int Indicater	Crystal 🖃

例2:岩石・鉱物の測定, Olivine (Condition file: **ES-037**, 分析時間: 395sec) ※カンラン石に微量に含まれる Ni, Co, Ca, Mn の精度を高めるために, 測定時間を長くしている.

	WDS E	lement Co	ondition				
No.of Elements	7 🖪	Pos. (mn	n) 🔷 Wave	. (A) 💠 I	lave.(nm)	. (A) 🔷 I	vave.(nm)
	Elem- 1	Elem- 2	Elem- 3	Elem- 4	Elem- 5	Elem- 6	Elem- 7
Elements	Ma	Ni	Ca	Si	Со	Fe	Mn
Name	Ma1-ES	Ni2-ES	Ca3-ES	Si1-ES	Co2-ES	Fe3-ES	Mn3-ES
X-ray Name	Ka	Ka	Ka	Ka	Ka	Ka	Ka
Order	1	1	1	1	1	1	1
Channe I	1	2	3	1	2	3	3
Crystal	TAP	LIF	PETJ	TAP	LIF	LIF	LIF
Spect. Pos.(mm)	107.531	115.423	107.690	77.394	124.521	134.801	146.339
Back (+) (mm)	5.000	5.000	5.000	5.000	5.000	24.000	5.000
Back (-) (mm)	5.000	3.000	5.000	5.000	5.000	24.000	5.000
Time/Count	Time	Time	Time	Time	Time	Time	Time
Peak Seek W.	1	0	0	1	0	1	0
Mes. Time (sec)	20.0	100.0	60.0	20.0	100.0	20.0	60.0
Bac. Time (sec)	5.0	20.0	20.0	5.0	20.0	5.0	20.0
Mes. Count	10000	10000	10000	10000	10000	10000	10000
Bac. Count	500	500	500	500	500	500	500
PHA gain	32	32	64	32	32	32	32
High V.(V)	1730	1710	1694	1730	1710	1706	1706
Base L.(V)	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Window (V)	9.30	. .	9.30	9.30		9.30	
Diff/Int	Diff	Int	Dift	Dift	Int	Diff	Int
Sequence	1	1	1	2	2	2	5
	Fil						
Peak overlap			Excha	ange		ange	
	OK		Car	ncel		ncel	

_		Qu. Ma	antitative Analy:	515	
	CH-1	CH-2	CH-3	CH-4	
1	Mg(TAP)	Ni(LIF)	Ca(PETJ)	Si(TAP)	
2		Fe(LIF)	Co(LIF)		
3		Mn(LIF)			
OK	Cancel		Pr	int Indicater	Crystal

例3:岩石・鉱物の測定, Pyroxene, Magnetite, Glass (Condition file: **ES-035**, 分析時間: 162sec)

	Qua	intitative	Analysis			ৎ	uantitative	Analysis		
	WDS E	Element C	ondition			WDS	Element C	ondition		
No.of Elements :	10	Pos. (m	n) 🔷 Wave	. (A) 💠 I	lave.(nm)	10	🔷 Pos. (mi	n) 🔷 Wave	. (A) 💠	dave.(nm)
	Elem- 1	Elem- 2	Elem- 3	Elem- 4	Elem- 5	Elem- 6	Elem-7	Elem- 8	Elem- 9	Elem-10
Elements	Ma	ĸ	Ca	Na	Si	Ti	Fe	Al	Cr	Mn
Name	Mg1-ES	K2-ES	Ca3-ES	Na4-ES	Si	Ti2-ES	Fe3-ES	A14-ES	Cr-ES	Mn3-ES
X-ray Name	Ka	Ka	Ka	Ka	Ka	Ka	Ka	Ka	Ka	Ka
Order	1	1	1	1	1	1	1	1	1	1
Channe 1	1	2	3	4	1	2	3	4	2	3
Crystal	TAP	PETJ	PETJ	TAP	TAP	PETJ	LIF	TAP	LIF	LIF
Spect. Pos.(mm)	107.531	120.192	107.690	129.547	77.320	88.461	134.801	90.726	159.265	146.339
Back (+) (mm)	5.000	5.000	5.000	8.000	5.000	5.000	24.000	5.000	5.000	5.000
Back (-) (mm)	5.000	5.000	5.000	5.000	7.000	5.000	24.000	6.000	5.000	5.000
Time/Count	Time	Time	Time	Time	Time	lime	lime	lime	lime	lime
Peak Seek W.	0	8		0	8	200	20.0	20.0	20.0	20.0
Mes. Time (sec)	20.0	10.0	20.0	10.0	20.0	20.0	20.0	20.0	20.0	20.0
Bac. Time (sec)	5.0	5.0	5.0	5.0	10.0	10000	10000	5.0	5.0	5.0
Mes. Count	10000	10000	10000	10000	10000	500	500	500	500	500
Bac. Count	22	500	500	22	22	54	32	32	32	32
PHA gain	1720	1609	1694	1704	1720	1654	1795	1704	1710	1796
High V.(V)	0 70	0 70	0 70	0 70	3 30	1 60	A 70	A 7A	a 7a	a 70
Base L.(V)	9 30	0.70	9 30	9 30	6 70	3.70	9.30	9.30	-	-
Window (V)	Diff	Int	Diff	Diff	Diff	Diff	Diff	Diff	Int	Int
Diff/Int	1	1	1	1	2	2	2	2	3	3
Sequence	-	-								-
Peak overlap	Jed		Excha	ange		194		Exch	ange	
	OK		Car	ncel		OK		Ca	ncel	

			Mea	sureme	nt order			
	CH-1		CH-2	СН	-3	CH-	4	
1	Mg(T	AP) K (PETJ)	Ca(PETJ)	Na(TAP)	
2	Si(T	Ti(PETJ)	Fe(LIF)	A1(TAP)	
3		Cr(LIF)	Mn(LIF)			
					Pri	nt Ind	icater [Caustal

5-4. 未知試料の測定(One-by-One および Preset Measurement)

1. EPMA Main Menu の「Analysis」から 「Quantitative Analysis」→「Sample」→「Group」→ 「ES」を選択する (ES は理工学研究センターのフォルダー).

- 2. Stage ファイルがすでに存在する場合はそれを選択, 無い場合は新規にファイル名を入力して OK する. (注意) Stage ファイルに登録するポイント数は 500 点以内とすること. 500 点を超える場合は新規に作 成する (500 点を超える分析点は Offline Correction に対応していないため).
- 3. 「Quantitative Measurement」のウインドウが表示されるので,「Stage」を選択し, Stage ウインドウを表示させる.
- 4. 「Stage」ウインドウにおいて測定したい部分の No.を選択したのち, 「Pos. Input」をクリック → 「Stage Condition Input」ウインドウが聞く

-				Quant	titative Ana	lysis				
Table	Edit	Line Set	Table Con	versi	on	Stage	Selec	t Un	select	Delete
Group		ES	Sample	M2	18-M224					
Preset	No	. Comme	ent S/B	Acm.	Sta	ge (X,Y,Z	2)	Qlw	Qnt Ed	s
	347	M219-3-7	S	1	44.9195,	84.5550,	10.9235	-	* -	Z
	348	M219-4-1	s	1	41.5400,	84.2945,	10.9130	- 1	* -	
	349	M219-4-2	s	1	41.5395,	83.9985,	10.9130		* -	
	350	M219-4-3	S	1	41.6265,	83.5675,	10.9130	-		
— —	351	M219-4-4	S	1	41.4000,	82.9490,	10.9070			
	352	M219-4-5	s	1	41.2585,	82.4325,	10.9070	-		
	353	M219-4-6	s	1	41.9185,	82.5225,	10.9070	- 1		_
	354	M219-4-7	S	1	42.0085,	83.3045,	10.9165	-		2
	355	M219-4-8	s	1	42.3240,	84.7835,	10.9215	-	* -	
	356	M220-1-1	s	1	50.3865,	54.0460,	10.8945	-		v
	Pos.	Input	One-by-	One	Clea	-	Cancel		Close	

,	Stage condition input	

	Stage Condi	ition Input	
	No.	350	
Comment M219-4-3			
Scan Type 🔷 Stag	e 🔷 Beam		
Magnification	Accum	ulation 1	
Stage Position	41.6265,83.5	675,10.9130	mm
Beam Position			
Apply	Confirm	Read & Apply	Clos
	Working Area		
Stage			
X 100 (mm)	50	0	
		0	X 41 6265
			¥ 00.5575
			83.56/5
			2 10.9130
			Store
		50	Read Move
		50	
			Range:0.0
	Å		
		10	0 (mm)
		Y	

- 5. 定量分析をしたい部分までステージを移動し, 試料の観察を行い, 分析位置を決定する.
 - 5-1) 「EOS Monitor」で P-Dia(プローブ径)が0になっていることを確認する.
 - 5-2) 操作盤上で「PCD」 \rightarrow OUT (消灯), 「PRB SCAN」 \rightarrow ON (緑点灯) にする.
 - 5-3) ジョイスティックコントローラーを操作し、ステージを分析位置まで移動させる.ステージは、 Stage ウインドウ上で分析したい位置をダブルクリックしても移動させることができる. 分析位置を探す時に観察する画像は SEI と COMP 像のどちらでも良いが、均質なガラス試料な らば SEI 像、微細な組織構造を示す造岩鉱物ならば COMP 像の方が適している.
 - (注意) 分析位置は研磨傷や気泡などの空洞が無い部分を選ぶこと. ビーム径を 10-200µm に広げて 測定をする場合には、その範囲内に研磨傷が無い部分をなるべく選ぶ.
 - 5-4) OMTV を見ながら Z 軸を調整する.
- 6. 「**Stage Condition Input**」ウインドウで Comment 欄に試料番号を入力し,「**Read & Apply**」をクッ リクしたのち「**Close**」ウインドウで閉じる.

		Quantitati	ive Analysis	
		Stage Condi No.	tion Input 350	
Comme	nt M219-4-3	3		
Scan	Type 🔷 Sta	ge 🔷 Beam		
Magni	fication	Accum	ulation 1	
Stage	Position	41.6265,83.5	675,10.9130	mm 🔻
Beam	Position [
	Apply	Confirm	Read & Apply	Close
<u> </u>		Working Area		
X	age 100 (mm)	50	0	
			0	
				X 41.6265
				¥ 83.5675
				2 10.9130
				Store
			50	Read Move
				Range : 0 . 0005
		×		1
			100	9 (mm)
			Y	

- 7. 複数点を入力する場合には、「Stage Condition Input」ウインドウ上の位置(No.)を追加しながら 5-3)→5-4)→6の操作を繰り返す.
- 8. すべての分析点の入力を終えたら,操作盤上で「PCD」→ IN(緑点灯),「PRB SCAN」 → OFF(消 灯)にする.
- 9. 「**Quantitative Measurement**」ウインドウから「Condition File」を選択し,分析元素の情報が登録 されている Condition File を選択する(**ES-xxx** というファイル名が理工学研究センターの Condition file である).

(注意) Conditoin File は分析前に事前に作っておく必要がある.作り方は「**5-3. Condition ファイ ルの新規作成**」を参照.

-		Quant	itative Analysi:	s
		Condit	ion File Store	
Select	Name		S	ort Order
	,		<	> Name 🔷 Date
No.		Name	Date	Comment
1		ES-035	Nov- 6-201	7 SiTiAlCrFeMnMgC
2		ES-037	Nov- 6-201	7 SiFeMnMgNiCoCa 🚽
3		ES-036	Nov- 5-201	7 SiAlFeMgCaNaK
4		ES-034	Oct-30-201	7 SIBALCAZNNAMO
5		sph-PCM	Oct-13-201	7
6		Ag_Hara	Oct-10-201	7
7		Electrum-Sofia	Sep-28-201	7
8		Sph-Sofia	Sep-21-201	7
9		Po-Py-Pn-Amo2	Sep-13-201	7
10		po-amo	Sep-13-201	7 🚽
Total	96 f	files	5530216 Kbyt 37168752 Kbyt	e used. e free.
				Print Rename Delete
	S	itore	New	Cancel

10.「EOS Monitor」に表示される電流値が 2.00e-08 A からズレている場合には,「CL (Current)」を クリックして,「Beam Current」ウインドウ上の「Fine」を調整して 2.00e-08 A に合わせる.

1 1. 「**EOS Monitor**」の「**P.Dia**」を目的のビーム径に合わせる. (鉱物や化合物なら 0µm, ガラスは 10-200µm) 12. 「Stage」ウインドウが表示されている場合は、一旦 Close する.

「Quantitative Measurement」ウインドウから「EOS」を選択し,「EOS Condition」ウインド ウで「Read」をクリックする.

→ Current が 2.00e-08A, Probe Diameter が上記 10 で設定したビーム径になっていることを確か めたのち, Close する.

(注意) この操作をせずに分析に進んでしまうと、例えばビーム径を広げる必要のあるガラス試料を観察時の 0µm で分析することになったり、現在ではなく過去(Condition File を測定した日付)のビームカレントで測定をしてしまう恐れがある.操作12の「EOS」の「Read」と設定値の確認は必ず行うこと.

- Quantitative A EOS Conditi	malysis ion		
Accelerating Voltage (kV)	15.	0	
Condenser Lens (C,F)	21	30	
Object Lens (C,F)	186	472	
Probe Scan	0	FF	
Magnification	200		
Probe Diameter (um)	200		
Scan Mode	PIC		
Scan Speed	ę	ŝR	
Current Auto	2.005e	-08 AĪ	

13.「Quantitative Measurement」ウインドウから「Standard Condition」を選択し、「Standard Condition」ウインドウを表示させ、標準試料を分析した日付が最新になっていることを確認する.
 →「OK」をクリックして、ウインドウを閉じる.

		Stan	Set Sta	ndards meas. ON	
	Elem-1	Elem-2	Elem-3	Elem-4	[
Element Signal Name Type Date	B CH-1 LDE2 A2 Compd-0 Nov-23-2017	Mo CH-2 PETJ A6 Pure-M Nov-23-2017	Na CH-4 TAP A4 Compd-0 Nov-23-2017	Si CH-4 TAP A2 Compd-0 Nov-23-2017	
	<u>م</u>	OK		Cancel	<

14.分析を開始する.

1 点ずつの分析を行う場合(One-by-One measurement)

→ 「Stage」ウインドウで「One-by-One」をクリックする.

複数点をまとめて分析する場合(Preset Measurement):

→ 「Stage」ウインドウで分析をしたい分析点にチェックを入れ(四角が青色になる). ニュー から「Preset Measurement」を選択する.

(注意)「One-by-One」と「Preset Measurement」の違い

One-by-One:位置を観察しながら逐一分析をしたい場合,分析部分の組織が微細で Preset Measurement で位置がズレてしまう恐れがある場合に選ぶ.

Preset Measurement:大きな結晶(斑晶)の中心や,組織が均質な試料を分析する場合に選ぶ.

F				Quan	titative An	alysis			
Table	Edit	Line Set	Table Co	nversi	ion	Stage	Select	Unsel	ect Delete
Group		ES	Sample	M2	218-M224]			
Preset	No	. Comm	ent S/B	Acn.	Sta	age (X,Y,Z	9. C	Q1u Qn	t Eds
	347	M219-3-7	s	1	44.9195,	84.5550,	10.9235	- •	- 4
	348	M219-4-1	s	1	41.5400,	84.2945,	10.9130	- •	-
	349	M219-4-2	s	1	41.5395,	83.9985,	10.9130	- •	-
	350	M219-4-3	s	1	41.6265,	83.5675,	10.9130		-
	351	M219-4-4	s	1	41.4000,	82.9490,	10.9070		-
	352	M219-4-5	s	1	41.2585,	82.4325,	10.9070		-
	353	M219-4-6	s	1	41.9185,	82.5225,	10.9070		
	354	M219-4-7	S	1	42.0085,	83.3045,	10.9165		- 1
	355	M219-4-8	s	1	42.3240,	84.7835,	10.9215		-
	356	H220-1-1	s	1	50.3865,	54.0460,	10.8945		
	Pos.	Input	One-by	-One	Clea	r (ancel	c	lose

1 5. 「One by One Measurement」または「Preset Measurement」ウインドウが開くので,「Acquire」 をクリックする.

	Quantitative Analysis							
		Preset	Measureme	nt				
Group Nam Sample Na Material Correctic Accelerat No. of Pr	ne mme ing Method ing Volta reset Posi	ge tions	ES M218-M2 Oxide ZAF 15.0 116	24 kV				
Element Channel Signal Crystal	Elem-1 B 1 WDS LDE2	Elem-2 Mo 2 WDS PETJ	Elem-3 Na 4 WDS TAP	Elem-4 Si 4 WDS TAP				
	A	<mark>cquire</mark>		Cancel				

16. 分析を開始すると,下の「Listing」ウインドウと「Quant Analysis Measurement」ウインドウが 表示される.

「Listing」ウインドウで Probe Dia.が目的の設定値, Probe Current が 2.00E-8 になっていること を確認する.

Listing	•	-	Measu
File Edit Page 1	Exit		Qua
Asynchronous Mode. UNK No. = 350 ./ES/M218-M224 dated Fri Nov 24 08:50:29 2017 4 Elements HDS only X= 41.627 Y= 83.567 Z= 10.913 Rcc. Voltage = 15.0 (kV) Probe Dia. = 200 Scan DFF Probe Current = 2.005E-08 (R) Channel Element ficm Peak Peak cnt sec B6_L cnt sec B6_U cnt sec 4 TRP Na T 1 129.558 14943.5(10.0) 41.0(5.0) 27.0(5.0) 2 PETJ No T 1 173.383 386.1(10.0) 190.0(10.0) 171.0(10.0) 4 TRP Si T 1 77.535 103016.3(10.0) 459.0(5.0) 22.0(5.0) 1 LIFE R T 1 129.257 3045 1(120.0) 145.0(20.0) 126.0(20.0)			Group Name Sample Name Stage Number Accumu Number Measurement S leasurement Lo
Measurement over Correction starts Standard Data Element Standard name Ht.(%) ZAF Fac. Z A F	Opti	f	Quant[OnebyO Group Nar Sample Nar Date Synchronous N Stage= 350, Inalysis All I

Quant Hnalysis Measurement	
Group Name : ES Sample Name : M218-M224 Stage Number : 350/1 Accumu Number : 1/1	
Measurement End	
Measurement Stop 🔲 Accum. Stop 🗍	Neev Off
Measurement Log Message	
Quant[OnebyOne] Measurement Group Name: ES Sample Name: M218-M224 Date : Nov 24 08:50 2017 Asynchronous Mode. Stage= 350/1 Acm= 1/1 Nov 24 08 Analysis All End Date Nov 24 08:	: 50 2017 53 2017
Print-out	Close

17.分析が終了したら分析値を確かめ、「Listing」ウインドウの「Exit」、「Quant Analysis Measurement」 ウインドウの「Close」をクリックしてウインドウを閉じる.

(Preset Measurement での注意点)

- 分析を開始したら、最初の数点が終了するまでは装置の前に待機し、分析結果を確認すること、分析 値が 100±2wt%を超える場合には「8-1. 定量分析で合計が 100wt%にならないとき」を参照し ながら問題点をクリアしてから Present Measurement を再開すること。
- Preset Measurment を一時停止したいときは「Quant Analysis Measurement」ウインドウの 「Measurement Stop(赤いボタン)」をクリックする.

5-5. 定量分析データの保存

1. 「EPMA Main Menu」から Process \rightarrow Quantitative Analysis \rightarrow Summary を選択.

- 2. Sample \rightarrow Group \rightarrow CGES \rightarrow 取り出したいデータのファイル名称をクリックする.
- 3. Summary が表示されたら wt%と Spreadsheet または Standard にチェックを入れ, Type out をクリ ックする。※分析結果だけでなく, Standard データも必ず保存をすること.

		Summa	ry			•
- 標準語	は料データ	ヲを保ィ	字する	湯合	28 Che	ck data
Group ES		541	Meas	54		
No.	Comment		Total	x	Y	B
1 "07	2602-pl-c		100.038	37.550	34.746	10.
— 2 "07	2602-pl-r		99.518	37.656	34.776	10.
T 3 "07	2602-pl-c	"	99.616	37.831	37.337	10.
– 4 "07	2602-pl-r	"	99.902	37.564	37.319	10.
5 "07	2602-pl-c		99.613	38.930	40.558	10.
6 "07	2602-pl-r		99.848	39.018	40.558	10.
				_		R
Select All	Clear All	Single S	Some			
◇Wt.%	◇ 100%	🔷 Atom	⇒к-	ratio	🔷 Total	
🗇 Net		◇ BG+	🔷 Cu	rrent	◇L-valu	e
⇔K raw	🔷 Normal	🔷 Stage	🔹 🔷 St	andard		
Calculator	Chemical	formula Fil	lter Sort	Wt. or	Spreads	sheet
Type out	Stop		CI	lose		

4. Listing 画面に結果が出力されるので, File メニューから **Preview**…を選択する.

Save as	0.079	0.009	20.051	0.708	0.000	
	0.119	0.025	18.550	1.457	0.000	
review	0.086	0.000	19.893	0.678	0.000	
Print	0.126	0.020	17.849	1.438	0.000	
	0.099	0.000	18.051	1.470	0.000	
Exit	0.189	0.042	14.914	3.036	0.000	
323	0.068	0.018	19.310	0.898	0.000	
324	0.182	0.606	4.067	1.854	0.000	
325	0.080	0.002	18.862	0.934	0.000	
326	0.102	0.020	16.886	1.637	0.000	
327	0.091	0.030	13.766	3.471	0.000	
328	0.085	0.034	15.258	3.103	0.000	
329	0.081	0.020	17.384	1.978	0.000	
330	0.096	0.040	15.009	2.691	0.000	
331	0.091	0.019	13.958	3.601	0.000	
332	0.088	0.006	13.985	3.851	0.000	
Minimum	0.030	0.000	0.000	0.000	0.000	
Maximum	49.029	0.937	22.624	5.260	17.628	
Average	11.372	0.036	10.468	1.422	1.242	
Sigma "No. of da	13.871 ta" 332	0.104	7.654	1.710	3.843	

5. PCPrintServer の画面が表示される $\rightarrow -$ 旦この画面で Close をクリックする.

6. データが表形式で表示される(下図). ファイルメニューから「名前を付けて保存」を選択.

Particle Mark(e)	BCPrintServer - Untitled									83
Weight percent Group: ES Sample: 071406 Page 1 No. Me0 K20 Ca0 Na20 Ti02 Fe0 A1203 Cr203 Mr0 Si02 2 14.079 0.000 1.3305 0.227 0.633 13.627 T.797 0.016 0.588 52.542 3 2.289 0.000 0.000 0.023 11.655 75.894 3.246 0.011 0.418 0.150 5 22.844 0.000 1.2266 0.023 0.204 19.372 0.637 54.098 6 20.444 0.120 0.276 0.589 71.881 2.479 0.065 0.423 54.4884 7 1.880 0.000 0.026 15.869 71.881 2.479 0.065 0.423 0.238 13.667 0.653 1.41 0.170 13.673 54.098 13.736 1.244 0.000 0.506 52.582 13.335 0.243 0.243 0.243 0.243 <	ファイル(F) 編集(E) 表示(V	/) 設定 ヘルフ(H)								
Weight percent Group : ES Sample : 071406 Page 1 No. Me0 K20 Ca0 Na20 TiQ2 Fe0 Al203 Cr203 Me0 Si02 Si22 Si23 Si23 <td< th=""><th></th><th>00% *</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		00% *								
No. Me0 K20 Ca0 Na20 Ti02 Fe0 Al203 Cr203 Mr0 Si02 1 22.975 0.021 1.605 0.227 0.633 13.627 1.737 0.015 0.588 52.542 3 2.289 0.000 0.000 0.023 11.655 75.984 3.246 0.011 0.418 0.150 4 22.228 0.000 1.3877 0.044 0.384 20.572 1.235 0.011 0.418 0.150 5 22.384 0.000 1.276 0.011 0.234 22.208 0.665 0.009 0.382 53.483 7 1.880 0.000 0.000 0.026 15.889 71.881 2.479 0.055 0.423 0.239 8 2.572 0.011 0.234 22.108 0.665 0.009 0.382 53.633 10 14.515 0.002 2.624 0.291 0.563 11.736 1.866 0.000<	Weight percent	Group : ES	Sample	: 071406	Page	1				в
	No. Mc0 1 22.975 2 14.079 3 2.286 5 22.844 6 20.404 7 1.880 8 2.572 9 14.155 10 14.511 11 3.057 12 2.341 13 14.626 14 513.910 16 0.106 17 2.074 18 14.382 20 2.445 26 2.760 21 2.141 22 .350 23 14.464 24 0.657 25 22.345 26 20.678 27 21.952 28 22.388 30 .27.62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na20 0.004 0.227 0.029 0.044 0.023 0.011 0.026 0.000 0.281 0.279 2.238 0.005 0.241 3.385 0.305 0.241 3.385 0.310 0.271 0.283 0.3579 0.271 0.293 0.005 0.271 0.293 0.000 0.271 0.283 0.000 0.271 0.285 0.000 0.271 0.288 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.027 0.005 0.026 0.005 0.005 0.005 0.005 0.005 0.000 0.005 0.005 0.005 0.000 0.000 0.005 0.005 0.005 0.005 0.000 0.005 0.005 0.005 0.005 0.000 0.005 0.005 0.005 0.005 0.005 0.000 0.005 0.000 0.271 0.000 0.000 0.000 0.005 0.005 0.005 0.000 0.000 0.005 0.000 0.271 0.000 0.000 0.026 0.000 0.005 0.000 0.005 0.000 0.027 0.005 0.000 0.027 0.005 0.000 0.027 0.005 0.000 0.027 0.005 0.000 0.027 0.005 0.000 0.027 0.005 0.000 0.027 0.000 0.027 0.000 0.027 0.005 0.005 0.027 0.000 0.027 0.000 0.027 0.000 0.027 0.000 0.000 0.000 0.027 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	$\begin{array}{c} \text{Ti02} \\ 0.295 \\ 0.683 \\ 0.364 \\ 0.204 \\ 0.234 \\ 15.869 \\ 0.482 \\ 10.957 \\ 0.563 \\ 0.482 \\ 1.084 \\ 1.084 \\ 1.294 \\ 0.437 \\ 0.698 \\ 0.025 \\ 12.723 \\ 0.698 \\ 0.025 \\ 12.731 \\ 1.531 \\ 12.314 \\ 1.491 \\ 0.493 \\ 1.042 \\ 0.303 \\ 0.383 \\ 0.342 \\ 0.252 \\ $	Fa0 19,941 13,627 75,964 20,572 22,208 71,881 11,786 75,314 11,786 7,985 75,314 11,786	A 1203 1.097 1.797 3.246 1.235 0.871 0.865 2.479 3.345 1.868 3.247 1.668 3.247 1.668 3.227 1.668 3.051 3.051 3.051 3.051 3.051 3.070 2.037 3.275 1.579 13.666 1.114 1.140 1.193 1.236 1.255 1.187 1.275 1.275 1.286 1.275	Cr203 0.026 0.015 0.011 0.013 0.000 0.055 0.045 0.000 0.000 0.001 0.0000 0.000 0.000 0.00000 0.00000 0.00000 0.000000	Mr-0 0,752 0,588 0,478 0,634 0,634 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,423 0,435 0,496 0,496 0,496 0,496 0,496 0,496 0,496 0,452 0,356 0,452 0,356 0,453 0,453 0,453 0,453 0,453 0,566 0,570 0,570 0,576 0	\$102 53.963 52.542 0.150 54.098 54.884 53.683 0.239 0.170 50.940 52.582 83.627 0.253 52.168 52.168 52.168 52.168 52.168 52.168 53.240 0.175 53.036 53.240 0.185 0.211 0.183 53.614 54.614 54.614 54.614 54.614 54.614	

7.

保存する場所(1):	📃 最近表示したが	易所	-	🌀 🤌 🖻 🛄 🔻	
æ.	名前		更新日時	種類	サイズ
	ES171104		2017/11/05 11:43	ショートカット	
最近表示した場所	📄 清水千沙希		2017/11/05 11:37	ショートカット	
	071406		2017/11/05 11:25	ショートカット	
=7.65.47	071402		2017/11/05 11:24	ショートカット	
テスジドップ	Reflection		2017/11/04 17:20	ショートカット	
11	👌 2017JNFL受	託研究	2017/10/31 21:19	ショートカット	
iv1	🛃 環資研究セン	ター	2017/10/28 14:53	ショートカット	
JAI	🛃 Hara		2017/10/12 12:04	ショートカット	
	🔊 Sofia		2017/09/29 15:24	ショートカット	
コンピュータ	AMO		2017/09/16 13:46	ショートカット	
_	•		III		•
	ファイル名(N):	x text		•	保存(S)
ネットワーク	コーイルの話手有(工)。	[=0, hn=7	1 (****)(*****)(****)		*** 1711

7. EPMA 装置操作盤及びジョイスティック左側のパソコンに保存用 CD を入れる。

8. EPMA 本体左側の PC 画面上で,

「Jx1-pc」→「共有」→「環資研究センター」→「上記操作 7 で名前を付けて保存したファイル」を CD に 移動させ、CD にファイルをコピーする。

6. フィラメントの交換方法

7. 観察・測定の終了方法

7-1. EPMA 装置からの試料ホルダーの取り出し方法

1. Stage Monitor \rightarrow Stage Change をクリックし, 試料ホルダーをホームポジションに移動させる.

2. 緑のスイッチを押して, 試料交換室の真空引きを開始する.

3. 緑色ランプの消灯後, 1分30秒待機. その後シャッターを開く.

5. 試料交換棒をゆっくり挿入する. 最後まで押し込んだら時計回りに回す.

6. サンプル挿入棒をゆっくりと最後まで引っ張る. この操作は, のぞき窓からホルダーが移動している様子 を確認しながら行う.

7.シャッターをゆっくりと閉める.

8. 消灯している緑色ボタンを押して大気圧にリークさせる (→緑色のランプ点灯に変わる).

9. 試料ホルダーを回収し, 試料を取り出す.

7-2.終了時の最終確認

1. 操作パネルの OMTV を OFF (消灯), ブラウン管モニターの電源スイッチを OFF にする.

- 2. Log note に装置の使用履歴を記入する.
- 3. EPMA 装置周辺に忘れ物が無いか確認する.
- 4. EPMA 室の電気を消灯する.

8. トラブルシューティング

8-1. OM ディスプレイ, SEI 像, COMP 像が鮮明に映らない, 又は全く見えないとき

モニターに試料が映らないときは以下をチェックすること.

- (1) 操作パネルの「**PRB SCAN**」が ON になっていない → 押す(緑ランプ点灯)
- (2) Z軸が大きくズレている → Z軸を調節する
- (3) SEI 像又は COMP 像の CONTRAST と BRIGHTNESS が大きくズレている.
 → ダイヤルを回して適切な値に調節する.
- (4) Dell パソコン上の「X_ScanImagePlus」のソフトウエア上が Start になっていない
 → ソフトウエア画面の左上の「▶ Start」をクリックする.
- (5) COMP 像の場合は, Scan Control パネルの Scan speed 設定が TV または SR になっている
 → S1, S2, S3 のどれかに変更する.
- (6) 試料表面のカーボン蒸着が薄すぎる
 - → このときは SEI 像がかすかに写るが,鮮明ではなくちらつきが発生する (チャージアップ). 蒸着をやり直す.

8-2. 定量分析値が合計で 100wt%にならないとき

通常の組成定量分析では分析値の合計が 100±2wt%なら許容範囲の誤差である. もしもこれを超える場合 には以下の順序でチェックを行うこと.

(1)標準試料を再分析してみる.

合計が100wt%にならないときは、数wt%以上の含有量をもつ主成分元素の分析が問題になっていると考えられるので、それらの標準試料を再分析する.微量成分については再分析は必要無い.

(2) SEI 像で分析点を拡大し,分析部分(電子線照射部)に研磨傷や気泡がないかどうかチェ ックする

研磨傷がある場合は、分析点を傷や気泡の無いところに移動させる.

ビーム径を広げている (>10µm)時は, 電子線が照射される面積全体に傷が無いことを確かめる.

(3)分析元素の測定チャンネルを変えてみる.

例えば, SiO₂は1-4CHのすべてで測定可能であるが, 3CH はややカウントが低い. そこで 3CH から 4CH に変えて再測定をすれば 100wt%に近くなる場合がある. 同様に, 他の元素についても測 定チャンネルを変えて測定を試みる(ただし, 測定時間が無駄に長くならないように各 CH に対する 分析元素の割り当てに留意すること). どの元素がどの CH で高いカウントが出るかどうかは, 標準 試料の分析時のウインドウに表示される分析カウントの出力値を見ておけばわかる.

(4)標準試料ファイルが最新の日付になっているかどうかチェックする.

Quantitative analysis ウインドウ → EOS Condition を開き,最新の日付の標準試料ファイル が選択されているかどうかをチェックする.標準試料を再測定しているにもかかわらず,最新の日付 のファイルが選択されていない場合には, Condition filed で測定チャンネルを書き換えた後で Store されていなかった可能性がある. Condition filed をもういちど Store してから再測定を試みる.

(5) <u>ビーム径が適切な値</u>(結晶なら 0μm, ガラスなら 50-200μm), <u>電流値が 2.00E-8A</u> に なっているかどうかチェックする.

適切な値なっていることを確認後,必ず Quantitative analysis ウインドウ \rightarrow EOS Condition を開き,条件を再読み込みしてから測定に進む.

例えば, ビーム径 0μm で観察後にそのままガラスの分析に移る際, 0μm のままで測定をしてしま うと, ガラスに穴が開くとともに, B₂O₃や Na₂O の揮発が生じて含有量が低下し, 結果として合計値 が 100wt%よりも低いあたいになる. (6) 試料に未分析の元素が含まれていないかどうか考える.

例えば、含水鉱物や火山ガラスの一部では数 wt%の H2O を含むことがあり、分析値の合計が 100wt%にならない.また、工業用ガラス材料では Li₂O のように定性分析をしても検出できない元 素が含まれている場合もある.材料を分析する際にはどのような元素が含まれている可能性があるの かをよく考えて分析を行うこと.

(7)標準試料の表面に汚れか無いかどうかをチェックする.

標準試料を長く使用していると, 誤って手で触れたり, 表面にゴミがついたりして, それらが分析 誤差の原因になることがある. そのような場合には, 同じ元素を含む別の標準試料に変更するか, ま たは標準試料の再研磨と蒸着を行ってから分析を再度試みる.

(8) 試料表面のカーボン蒸着の厚みが適切かどうかチェックする.

測定試料のカーボン蒸着が標準試料と比較して薄すぎる場合には合計値が100wt%よりも高めに, 厚すぎる場合には低めになる場合がある.樹脂で固めた試料の場合,すべての試料について系統的に 値が高め,低めになる場合には,蒸着厚さが適切でない可能性がある.

また,過去に正常に分析できた試料(合計値が100wt%になる試料)を試料ホルダーに設置し,同じ条件での分析を行い,その試料の分析値は問題ないが,目的試料のみ合計が100wt%からズレる場合には,蒸着厚さが適切でない可能性がある.

8-3. 使用中にコンピュータ又は装置が応答しなくなった(フリーズ)したとき

装置やコンピュータがフリーズした場合には、装置の強制リセットを行い、復旧させる. これには、EPMA Main Menu をシャットダウンしない方法とする方法の2通りがある.

強制リセットが必要となる例:

- · マウスをクリックしてもコンピュータが反応しない.
- ・ ジョイスティックを操作していないのに, ステージが勝手に暴走する.
- · COARSE / FINE 調整が効かなくなる.
- · ステージが動かない, または移動にリミッターが掛かる.

(注意)

- ・ <u>強制リセットをすると、プリセットポジションの情報が失われる</u>. これは、プリセットポイントの入 カ時に、ときどき定量分析を行っておくことで防ぐことができる. 例えば、10 カ所のプリセットポイ ントを指定するとき、まったく分析をしていないと 10 点すべての位置のデータが失われるが、9 点入 力後に 1 点だけ one-by-one で測定をしておけば、強制リセットをしても位置データは保存される.
- ・ <u>強制リセットでの再起動後はプリセットポジションの位置(X,Y,Z 軸全て)が微妙に変わってしまっ</u> ている場合があるので、必ずプリセットポジションの再確認を行うこと. 再確認をせずにプリセット 測定に進んでしまうと、位置がズレたままで測定が進んでしまう場合がある.

その1: EPMA Main Menu をシャットダウンせずに強制リセットする方法

- 1. 操作パネルの ACCEL. VOLTAGE (オレンジ色に点灯しているボタン)を OFF
- 2. EPMA 装置背面の **OPE PWR** トグルスイッチを OFF \rightarrow 1分待つ→ **OPE PWR** トグルスイッチを ON

- 3. Windows メニューの左下からコンピュータを再起動させる.
- 4. Windows Vista が再起動後,下記の画面になるので,ユーザ名= jx1 を選択し,パスワード= jx1jx1 で ログインする.

5. 画面左側, 上から3番目の「EPMA」アイコンを クリックし, しばらく待つ.

「ようこそ! jxa1」の画面が表示されるので、
 ユーザ名= jx1 及びパスワード= jx1jx1 でログイン
 し、しばらく待つ.

 EPMA Main Menu が表示されるので、一番左、 JEOLメニューから「Connect EPMA System」 を選択.

		EPMA Mai	n Menu		•
File Co	nfigure				
				1404 (0)	12
Process	Analysis	Monitor	Initialize	Utility	JEOL

8. Are you Ok?のウインドウ(下左図)が表示される.「**OK, Connect**」をクリックする. しばらくすると, 「Ok Connect to EPMA system」と表示される(下右図)ので,「**OK**」をクリックする.

EPMA I	<xdialog> 🕴 🗖</xdialog>
Connect EPMA System. Are you Ok?	Ok Connct to EPMA System
Ok,Connect Cancel	OK

9. EOS Monitor 及び Stage Monitor を表示させる.

その2: EPMA Main Menu をシャットダウンして強制リセットする方法

- 1. 操作パネルの ACCEL. VOLTAGE (オレンジ色に点灯しているボタン)を OFF
- 2. EPMA main Menu \rightarrow NITIALISE \rightarrow SYSTEMSHUTDOWN
- 3. Windows VISTA をシャットダウンする.
- 4. EPMA 装置背面の OPE PWR トグルスイッチを OFF
 → 1分待つ→ OPE PWR トグルスイッチを ON

5. プリンターの裏側に床置きされているコンピュータ (HP Integrity rx2660) の電源ボタン(オレンジ色になっている)を ON → 電源ボタンが緑色に変わる.

6. モニターを切り替えを行う(SELECT の上側左を押す
 → 床置きされているコンピュータがディスプレイに
 表示されるようになる).

7. 下記のような画面が5分ほど続くので,処理が終了するまで待つ.

8. 下記のように「ようこそ! jxa1」と表示されたら、ユーザ名(jx1)及びパスワード(jx1jx1)を入力する. このときの入力は、ディスプレイ背面にあるもうひとつのキーボードを用いて行う.

9. 操作盤上のコンピュータ(HP xw4600Workstation)の電源が切れている場合は電源 ON → 再度モニタ切り替えを行う(SELECT の上側右を押す).

10. 下記のように EPMA Main Menu が立ち上がったのち,もういちど「ようこそ! jxa1」の画面が表示 されるので,ユーザ名(jx1)及びパスワード(jx1jx1)を入力する.

11. 下記のように Windows 上に EPMA Main Menu が立ち上がる.

12. EOS Monitor 及び Stage Monitor を表示させる.

