研究論文

SPS処理を施したナノカーボン材料の特性

小 原 龍*1, 佐々木 洋 哉*1, 長 南 安 紀*1, 小宮山 崇 夫*1, 小 谷 光 司*1, 山 口 博 之*1, 山 内 繁*2, 菅 原 靖*3, 関 根 崇*3, 杉 山 重 彰*3, 桃 井 優 一*4

Characteristics of spark plasma sintered nanocarbon materials

Ryu Obara *1, Hiroya Sasaki *1, Yasunori Chonan *1, Takao Komiyama *1, Koji Kotani *1, Hiroyuki Yamaguchi *1, Shigeru Yamauchi *2, Yasushi Sugawara *3, Takashi Sekine *3, Shigeaki Sugiyama *3 and Yuichi Momoi *4

We prepared binder-free monoliths of carbon nanohorns (CNHs), hole-opened carbon nanohorns (CNHoxs), multi-walled carbon nanotube (MWCNT), and single-walled carbon nanotube (SWCNT) using spark plasma sintering (SPS) method at 1800°C and 80 MPa in vacuum. The density of the SPS-treated SWCNT is 1.8 g/cm³, which is close to that of graphite, while those of CNHs, CNHoxs, and MWCNT remained 1.1-1.3 g/cm³ even after SPS treatment. We evaluated the monoliths using Raman spectroscopy and scanning electron microscopy observation, which showed a significant defect formation and graphitization of SWCNTs. Moreover, the increase of defects density in CNHs, CNHoxs, and MWCNT was moderate, and sub-micron size structures remained. We observed that the monoliths of CNHs and CNHoxs were highly conductive with a Hall mobility of positive holes of ~50 cm²/Vs and electrical conductivity of ~300 S/cm. These experimental results indicated that the SPS treatment under appropriate conditions could provide a CNHs monolith with nanostructure and good electrical conductivity.

Keywords: carbon nanohorns, Spark Plasma Sintering, Raman spectroscopy, nanostructure, mobility, electrical conductivity