Raman Spectroscopy of Natural Titanomagnetites

Leeysmon Hulijeli*, Yasushi Watanabe*, Osamu Nishikawa* and Carmela Alen J. Tupaz*

* Department of Earth Resource Sciences, Graduate School of International Resource Sciences, Akita University, Akita 010-8502, Japan E-mail:leeys.hulijeli@gmail.com

The Raman spectral patterns of analyzed natural titanomagnetite samples revealed peaks at 670-680 cm⁻¹, 544-603 cm⁻¹, 407-495 cm⁻¹ and 373-392 cm⁻¹ that correspond to the A_{1g}, T_{2g} (2), T_{2g} (3) and E_g vibrational modes of the spinel *Fd3m* space group. Previous studies of titanomagnetite Raman spectra patterns have suggested the behavior of these peaks reflect the distribution of Fe²⁺-O, Fe³⁺-O and Ti⁴⁺-O bonds within the titanomagnetite crystal structure. The peak intensities of each vibrational modes are observed to be relative, reflecting the re-distribution of Fe²⁺ and Fe³⁺ in both the tetrahedral and octahedral sites as a function of Ti concentration. Existing titanomagnetite Raman spectroscopy studies are limited to analysis of synthetic titanomagnetite. In this study, Raman spectral patterns from natural titanomagnetite i.e., magnetite-ulvöspinel solid solution samples were analyzed to determine behavior of Raman spectrum peak positions and intensities due to changing content of Ti⁴⁺, Fe²⁺ and Fe³⁺.

Keywords: Raman spectroscopy, Natural titanomagnetite, Ti concentration