Original Received December 23, 2021 Accepted for Publication February 18, 2022 ©2022 Soc. Mater. Eng. Resour. Japan ## Ag Nanofibers with Ultrahigh Aspect Ratios Fabricated by Catalytic Reduction of Solution Blowspun AgNO₃/PVA/PVP-mixed Nanofibers Xu Zhao*, Chiho Onodera* and Mikio Muraoka* * Department of Systems Design Engineering, Akita University, Akita 010-8502, Japan E-mail:zhao@gipc.akita-u.ac.jp (X. Z) Ag nanofiber (NF)-based networks have attracted significant attention as next-generation flexible conductive materials. Ag NFs with high aspect ratios decrease the number density required for percolation; hence, they form qualitatively superior conductive films. Previously, we developed a novel method for fabricating Ag NFs via Pt nanoparticle-assisted hydrogen-free reduction of Ag⁺- containing polymers. This method enables rapid preparation of Ag NFs in high yields. Electrospinning was utilized for producing Ag⁺-containing precursor NFs. Nevertheless, it was difficult to achieve Ag NFs with high aspect ratios due to fiber discontinuity resulting from the limited amount of Ag⁺ in the electrospinning solution. In this study, in order to improve the previous method, highly concentrated AgNO₃-containing polymer NFs were produced using solution blowspinning instead of electrospinning. Ag NFs with ultrahigh aspect ratios of over 10⁵ were fabricated via catalytic reduction of solution blowspun AgNO₃-containing polymer NFs. Ag NF networks with low sheet resistance were produced, thereby demonstrating their potential applicability as flexible transparent electrodes and transparent film heaters. Keywords: Ag nanofiber, Aspect ratio, Solution blowspinning, Catalytic reduction